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Disordered one-dimensional contact process
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Theoretical and numerical analyses of the one-dimensional contact process with quenched disorder are
presented. We derive scaling relations which differ from their counterparts in the pure model, and that are valid
not only at the critical point but also away from it due to the presence of generic scale invariance. All the
proposed scaling laws are verified in numerical simulations. In addition, we map the disordered contact process
into a non-Markovian contact process by using the so called run time statistics, and write down the associated
field theory. This turns out belong to the same universality class as the one derived by Janssen@Phys. Rev. E
55, 6253 ~1997!# for the quenched system with a Gaussian distribution of impurities. Our findings reported
herein support the lack of universality suggested by the field-theoretical analysis: generic power-law behaviors
are obtained. We moreover show the absence of a characteristic time away from the critical point, and the
absence of universality is put forward. The intermediate sublinear regime predicted by Bramsom, Durret, and
Schnmann@Ann. Prob.19, 960 ~1991!# is also found.@S1063-651X~98!04905-8#

PACS number~s!: 05.50.1q, 02.50.2r
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I. INTRODUCTION

As first conjectured by Janssen and Grassberger@1#, many
numerical and analytical studies have established clearly
all systems exhibiting a continuous transition into aunique
absorbing state, without any other extra symmetry or con
vation law, belong to the same universality class, nam
that of the contact process@2,3#. This conjecture has bee
extended to include multicomponent systems@4#, and also
systems with an infinite number of absorbing states@5#.
Among many other models in this broad class are direc
percolation@2,3#, the contact process@6#, catalytic reactions
on surfaces@7#, the spreading of epidemics, and branchi
annihilating random walks@8#. Reggeon field theory is the
minimal continuous theory capturing the key features of t
universality class@9,1# @which is often referred to as the d
rected percolation~DP hereafter! universality class#.

Despite its theoretical importance, no experiment has s
ceeded so far in identifying critical exponents compati
with the predicted DP values. This could be due to the f
that real systems are never pure, i.e., they present impur
dilution, or other forms of disorder. The question arises
how disorder affects the critical behavior of DP-like system
That problem was first posed by Kinzel@10# and studied
numerically by Noest@11,12#, who showed using a Harri
criterion @13#, that quenched disorder changes the criti
behavior of DP systems in spatial dimensions belowd54.
He also demonstrated that whend51, a generic power law
~generic scale invariance! can be observed, and that ind52 a
Griffiths-like phase@14# can appear when the impurities tak
the form of dilution @11#. This same problem was recent
tackled by Dickman and Moreira in interesting pape
@15,16#, where they pointed out the presence of logarithm
time dependences in thed52 case, and a possible violatio
of scaling.

Two other related problems are temporarily disorde
systems with absorbing states, which have also been rec
571063-651X/98/57~5!/5060~9!/$15.00
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investigated, with apparently striking conclusions@17#; and
the problem of heterogeneous catalysis on disordered me
for which a much richer behavior is observed than in
counterpart without disorder@18#.

In any case, the dynamics in impure DP systems is w
established to be extremely slow. Due to the presence
impurities, a system that is globally in the absorbing pha
can include regions that locally take parameter values
correspond to the active regime in the analogous pure
tem. The presence of these regions prevents the system
easily relaxing to the absorbing state, and consequent
decays in a slow fashion, i.e., exhibiting power laws ind51
@11,12#, and logarithmically ind52 @15,16#, but not expo-
nentially, as generically expected in pure systems away fr
the critical point.

At a theoretical level a field-theory analysis for this cla
of impure systems was recently derived by Janssen@19#.
This work corrects a previous incomplete analysis@20#, and
concludes from ane expansion around the upper critical d
mension,d54, that the renormalization group flow equ
tions exhibit only runaway trajectories, and that therefo
there is no stable~perturbative! fixed point ~nothing can be
concluded about nonperturbative fixed points!. This can be
seen as evidence that no universal critical behavior is
pected in this class of models.

In this paper we revisit the impure one-dimensional pro
lem, and look at it within an interesting perspective. In p
ticular, we analyze the presence or absence of scaling law
analogy to the two-dimensional results recently presented
Dickman and Moreira. We moreover study the universa
of critical exponents and the scaling relations they obey,
verify the presence of a sublinear regime predicted by Bra
son, Durret, and Schnmann@21#. On the other hand, we
present a non-Markovian representation of this class of s
tems that shows the same phenomenology. This appro
enables us to derive a field theory that turns out to be equ
5060 © 1998 The American Physical Society
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57 5061DISORDERED ONE-DIMENSIONAL CONTACT PROCESS
lent to the one derived by Janssen. From the field theory
finally obtain relations among exponents.

II. MODEL

In the standard contact process@6,2# each site of a
d-dimensional lattice is either ‘‘occupied’’ or ‘‘vacant.’’ In
its discrete-time version, an occupied site is extracted r
domly at each time step; it generates an offspring with pr
ability p, or disappears with complementary probability
2p. The offspring occupies a randomly chosen near
neighbor; if it was empty it becomes occupied, while t
system remains unchanged if the neighbor was already o
pied. In the disordered contact process the probabilityp
changes from site to site. It is fixed in time, and obeys t
distribution P(p). Through this paper we consider in pa
ticular

P~p,a!5apa21, ~1!

for which

^p&5
a

a11
; ~2!

in this waya acts as a control parameter. For large values
a, the creation probability is large, and the system is in
active phase, while for sufficiently small values ofp the
system decays into the absorbing state. We have chose
previous distribution for a technical reasons: it simplifies
application of the run time statistic@22–24# that we use to
study the model.

The central magnitudes usually considered in this kind
system are of two types: magnitudes measured in ana
with homogeneous initial conditions, and those measu
studying the spreading of a localized ‘‘seed’’ into the oth
wise empty space@25#. In the first group, we determine th
stationary order parametern ~defined as the average dens
of particles in the stationary state!, the correlation timet,
and the correlation lengthj. In the second group we study~i!
the total number of occupied sites in the lattice~averaged
over all the runs including those which have reached
absorbing state! as a function of time,N(t); ~ii ! the overall
surviving probabilityPs(t), corresponding to the probabilit
that the system has not reached the absorbing state at tit,
and~iii ! the mean square distance of spreading from the
gin for the trials still surviving at at a given timet as a
function of time,R2(t).

Right at the critical point of pure systems, we have

N~ t !}th, Ps~ t !}t2d, R2~ t !}tz and n~ t !}t2u,
~3!

and, at a small distanceD from the critical point,

n}Db, t}D2n t, j}D2nx, ~4!

which define the set of critical exponents we are interes
in. In pure systems the following scaling relations hold:

h1d1u5dz/2, d5u, z52nx /n t and u5b/n t ;
~5!
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these expressions have to be modified for the disorde
model as we will show~see Refs.@3,1,26#, and references
therein!.

III. NON-MARKOVIAN REPRESENTATION

We start our analysis of the model by mapping it into
non-Markovian model. The idea of representing a mo
with quenched disorder by means of an effective no
Markovian equation, i.e., with memory, including no diso
der, is not totally new. A complete theory that justifies su
an approach was developed in Ref.@22#; it was named the
run time statistic~RTS!, and has proven to be a useful tool
both the study of fractals with quenched disorder@23# and
self-organized models with extremal dynamics@24#.

The central idea of the RTS can be exemplified by
application to the random random walker~RRW! @27#. The
RRW is defined in the following way: a standard on
dimensional random walker is considered, with the only d
ference being that the probabilities of jumping to the right,q,
or to the left, 12q, change from site to site, are quenche
and extracted from a certain probability distributionP(q).
The probability that at a given site, characterized by a giv
value of q, visited n times by the walker, the walker ha
jumpedk times to the left, is easily shown to be given by th
binomial distribution@27#

P~kuq,n!5
n!

k! ~n2k!!
qk~12q!n2k. ~6!

Using the Bayes inversion formula for the inversion of co
ditional probabilities, one can calculate the probability tha
a given site the probabilityq takes a particular value betwee
q andq1dq from the knowledge ofk aftern jumps@28,27#:

P~q1dqun,k!5
~n11!!

k! ~n2k!!
qk~12q!n2kP~q!dq. ~7!

An effective transition probability can be accordingly d
fined as

q~n,k!5E dq qP~qun,k!. ~8!

This equation gives the effective probability for the walker
jump to the right in itsn11 visit to a given site, conditioned
to the fact that inn previous visits it jumpedk times to the
right.

Observe that the distribution equation~7! changes with
time ~i.e., with n); the information about the history of th
system is contained in the effective transition probabilit
~that change from site to site!. This is usually calledrun time
statistics@22#.

Let us now apply the previously described method to
disordered contact process. At each site the value ofp ~that
plays now a role analogous toq in the RRW!, is extracted
from the distribution equation~1! @29#; it is straightforward
to verify that

P~p1dpun,k!5pk1a21~12p!n2k
~n11!!

~k1a21!! ~n2k!!
dp,

~9!
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5062 57CAFIERO, GABRIELLI, AND MUÑOZ
wheren is the number of times that a given site has be
chosen to try an evolution step, andk is the total number of
times in which an offspring has been generated~obviously
n2k is the number of events in which the site has beco
empty!. Therefore the effective parameterp at the site under
consideration is

^p&5E
0

1

dp pP~p1dpun,k!5
k1a

n1a11
. ~10!

Note that in the infiniten limit the distribution of effective
values of the probabilitŷp& does not collapse to ad func-
tion, but converges asymptotically to the distribution equ
tion ~1! @27#.

IV. FIELD THEORY

Using the previously derived non-Markovian approac
we can construct an associate field theory. Let us first c
sider the standard Reggeon field theory describing the
versality class of the pure contact process@1,9#:

S@f,c#5E drdE
0

`

dt$lc~x,t !2f~x,t !2c~x,t !@] tf2m2f

2lf~x,t !22¹2f~x,t !#%. ~11!

The coefficient of the linear term,m2 ~the massin a field
theoretical language!, depends linearly on the creation pro
ability p. A large p makes the contact process supercritic
So does a value ofm2 above its critical value. Therefore i
order to implement the idea of âp& value changing in time
@as happens in Eqs.~9! and ~10!# in the field theory, we
should consider a time dependentm2. To see howm2 should
be modified, one should observe that at any time the re
malized value ofm2 at a given pointx is given by the ex-
pectation value ofc(x,t)f(x,t). Therefore, in order to in-
troduce the dependence ofp on the system history at eac
point x, we can perform the following substitution:

m2→mmod
2 ~x,t !5m21gE

0

t

dt c~x,t!f~x,t!; ~12!

that is, at every time step, themodifiedvalue of the linear
coefficient,mmod

2 , is given by its original value corrected b
a time dependent term given by the expectation value
c(x,t)f(x,t) integrated over the previous history of the sy
tem, i.e., the original creation probability is substituted by
sort of time average of the creation probability along t
previous system path~observe thatg acts as a normalization
factor!, in analogy to what we obtained in Eqs.~9! and~10!.
We want to stress that the construction here is not rigor
but only a reasonable guess based on the knowledge de
from the run time statistics approach.

By performing the previous substitution, the action b
comes
n

e
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SM@f,c#5E drdE
0

`

dtFlc2f2c~] tf2m2f2lf2

2¹2f!1gcfE
0

t

dt c~x,t!f~x,t!G , ~13!

where the dependence of the fields onx and t has been
omitted to simplify notations.

On the other hand, considering the standard Reggeon
theory @Eq. ~11!#, with a site dependent quenched mass
efficient m2(x), and a Gaussian distribution of ‘‘masses
with mean m2, and variance^m2(x)m2(x8)&5( f /2)d(x
2x8), after averaging over the disorder~one just has to per-
form a Gaussian integral! @19# one obtains

Sd@f,c#5E drdF E
0

`

dt@lc2f2c~] tf2m2f2lf2

2¹2f!#G1 f F E
0

`

dt c~x,t !f~x,t !G2

. ~14!

Observe that Eq.~14! is very similar to Eq.~13!, except for
the time integration limit and the value of the multiplicativ
coefficients of the second term on the right-hand side. T
difference states that only in the large time limit does t
non-Markovian approach reproduce the exact result~as also
happens in the run time statistics approach!. Therefore, we
take the infinite time limit in the upper limit of the integra
equation~12!, and in this way we recover Eq.~13!.

Naive power counting arguments show that all three n
linearities in Eq.~13! can be renormalized ind54. This
result is consistent with the Harris criterium@13# presented
by Kinzel @10# and Noest@11#, which states that quenche
spatial disorder affects the critical behavior of the cont
process and models in the same universality class belod
54. The detailed renormalization procedure of Eq.~14! can
be found in Ref.@19#.

V. SCALING LAWS

The field theory we have written down can also be used
a starting point to derive scaling relations. From Eq.~11! ~or
using other standard scaling arguments!, it is easy to derive
that, in the active regime,

h1d1u5dz/2. ~15!

Let us derive the corresponding relation for the impure~non-
Markovian! model here. We invoke the simple argumen
that, asN(t) is obtained averaging over all the runs, it can
written asN(t)5Ns(t)Ps(t)103@12Ps(t)# whereNs(t) is
the total number of particles calculated averaging only o
surviving runs. Consequently, one obtainsNs(t)'th1d. Af-
ter creating a perturbation, if a growing cluster of occupi
sites is generated, the radius of such a cluster grows aR
}tz/2, and its volume asRd}tdz/2. From the two previous
expressions, the density of particles inside the cluster g
like th1d2dz/2. But the density inside the cluster scales ast2u

by definition of u. Therefore, we straightforwardly obtai
Eq. ~15!.
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57 5063DISORDERED ONE-DIMENSIONAL CONTACT PROCESS
The previous expression is valid only at the critical po
in the pure model, where scale invariance is expected. C
trarily, in the impure model, where generic scale invarian
is expected, the previous argument is valid in all the act
phase, in which growing clusters are typically genera
from localized seeds.

On the other hand, in the absorbing phase, typically ini
seeds are located in locally absorbing regions and die
exponentially. However, there is a probability for the initi
seed of ‘‘landing’’ in a locally active cluster. When the pe
turbation escapes from these clusters, it dies out expo
tially more quickly. But, inside these finite clusters, the loc
stationary density is reached in a finite time. Therefore
can substitute formallyu by zero in Eq.~15!, and obtain

h1d5dz/2 ~16!

~note that this does not mean thatu is zero!.
On the other hand, using the symmetry of the Lagrang

under the exchange of the fieldsf andc, it is not difficult to
obtain

d5u, ~17!

as in the pure model~see Ref.@26# for a review of the un-
derlying ideas!. Observe that the previous symmetry, pres
in the Reggeon field theory, is not broken by the introduct
of the non-Markovian term, i.e., by the quenched impuriti
Therefore,

h12d5dz/2 ~18!

in the active regime of our model, as well as in the critic
point of the pure model.

In the active phase, starting from an homogeneous di
bution, the system also relaxes to its stationary state a
power law. By definition of the active regime, the survivin
probability does not go to zero for large times. Moreover,
Ps(t) is a monotonously decreasing function of time, w
obtain thatd50 all along the active phase. Using the scali
relation presented in Eq.~17!, we also obtainu50. This
simplifies Eq.~18! to

h5dz/2. ~19!

FIG. 1. Distribution of̂ p& for large times in the non-Markovian
model PM(p) compared with the fixed distribution of the diso
dered modelPQ(p) for a52.
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For completeness, let us point out that the exponend̂
calculated in Ref.@11# is easily related to the exponents w
have defined, since

d̂511h1d. ~20!

FIG. 2. Decay of the density of occupied sites as a function
time for the disordered model~upper plot! and for the non-
Markovian model~lower plot!, for different values of̂ p&.

FIG. 3. Value of the exponentu(^p&) as a function of̂ p& for
the disordered model~upper plot! and for the non-Markovian mode
~lower plot!.
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5064 57CAFIERO, GABRIELLI, AND MUÑOZ
To justify this, it is sufficent to observe thatd̂ is the exponent
of a time integral of the total number of particles averag
over the surviving runs.

Summing up, the main conclusions of this section are
following: ~i! In the active phase,h5dz/2 andd5u50. ~ii !
In the absorbing phase,h1d5dz/2 andd5uÞ0.

VI. MONTE CARLO RESULTS

We have performed extensive Monte Carlo simulations
the contact process with quenched impurities distributed
cording to Eq. ~1!, as well as of the associated no
Markovian contact process defined by Eqs.~9! and ~10!.
Spreading experiments have been performed in lattices
were large enough to ensure that the occupied region d
not reach the system limits. Experiments are started w
random homogeneous initial conditions and are performe
system sizes up toL5104 and periodic boundary conditions
But most of the results presented correspond toL5103. At
every time step a particle is randomly chosen, and the
namics proceeds in the way explained in Sec. II; after e
step the time variablet is increased in 1/N(t); i.e., when all
the particles are updated once on average, the time incre
in one unit. Simulations are run long enough to ensure
the system relaxes to its stationary state in the active ph
(t'1.63105 time steps!. The different magnitudes are ob
tained by averaging over many independent runs~from 102

for large values of̂ p&, where most realizations die at la
times and we can easily collect a good statistics, to 105 for
small values of̂ p&, where many realizations die at ear
times!. All the forthcoming discussions are valid for both th
model with quenched disorder and the non-Markov

FIG. 4. Stationary value of the density as a function of^p& for
the disordered model~upper plot! and for the non-Markovian mode
~lower plot!. A power-law fit for the scaling ofn(t5`;^p&) is
shown in the figure.
d
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equivalent model; the results coincide within the numeri
accuracy. In fact, as it is shown in Fig. 1, the long tim
distribution of values of̂ p& in the non-Markovian model is
verified to converge to the distribution in the quench
model of Eq.~1!. To avoid repetition, we discuss both cas
as a whole, and present figures for both the disordered
non-Markovian models. We now present the main results
have obtained.

A. Homogeneous initial conditions

The density of particlesn(t) @n(t)5N(t)/L# decays in
time as shown in Fig. 2. Observe that for large enough val
of ^p& the curves converge to a stationary value, that is, th
derivative with respect to time converges to zero asympt
cally. On the other hand, for small values of^p& the curves
decay like power laws with nonuniversal exponents that
pend on ^p&; n(t)}t2u(,p.). In Fig. 3, we show the
asymptotic exponentu(^p&) as a function of̂ p&, for both
the disordered and non-Markovian models. It decays c
tinuously from its maximum value in the absorbing state t
very small value~compatible with zero!. It vanishes in the
active regime. Also observe the difficulty in accurately loc
ing the critical point. Usually, in pure systems away from t
critical point, n(t) decays exponentially in the absorbin
phase, and converges to a constant value in the active ph
It decays as a power law only at the critical point. Cons
quently there is a neat criterion to identify the critical poin
power laws are the signature of criticality. In the impu
model, instead, the generic presence of power laws ma
the determination of the critical point a more delicate iss
but at the same time a more irrelevant one.

Two possible scenarios are compatible with the data
have obtained: in the first oneu(^p&) is a continuous func-

FIG. 5. Log-log plot ofn(t5`;^p&)1/b as a function of̂ p& for
the disordered model~upper plot! and for the non-Markovian mode
~lower plot!. The value ofb is that given by the fit in Fig. 4. The
extrapolation ton(t5`)50 givespc50.7160.01.
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57 5065DISORDERED ONE-DIMENSIONAL CONTACT PROCESS
tion of ^p&, and the point at which it reaches zero for the fi
time corresponds to the critical point. The second possib
is that there is a discontinuous jump at the critical point, i
the curves in Fig. 3 would not be continuous; this wou
imply a nonzero value ofu at the transition point. Even
though from our numerics it is not possible to resolve
previous dilemma, we are tempted to conclude that the
possibility is the right one. This argument is based on
small values ofu(^p&) in the vicinity of the critical point,
and relies on the fact that the slopes are always observe
change smoothly with^p&. Therefore, no discontinuity
‘‘jump’’ is expected to occur. In any case, from the nume
ics, u can be expressed at the critical point asu(^p&c)
50.0260.05, with ^p&c50.7160.01 ~see below!.

In Fig. 4, we plot the asymptotic densityn as a function
of ^p&, together with a power-law fit. The best fit is obtain
taking ^p&c50.705 for the critical effective parameter, an
gives b50.2960.01 for both the disordered and no
Markovian models. In Fig. 5, we check the consistency
our assumption on̂p&c , by representing in a log-log plo

FIG. 6. Decay of the two-time density correlation function f
different initial times~disordered model! as a function of the time
differencet, and different values of̂p&: ^p&50.68 in the absorbing
phase~upper figure!, ^p&50.71 at critical point~central figure!, and
^p&50.74 in the active phase~lower figure!.
t
y
.,

e
st
e

to

f

n1/b as a function ofD5^p&2^p&c , with b50.29. The ex-
trapolation to zero ofn1/b gives^p&c50.7160.01, consistent
with our previous assumption. Observe that the value ob
we find is very different from the one obtained by Noest f
a different distribution of impurities,b51.7560.1 @11#. We
interpret this discrepancy as a consequence of the absen
universality predicted by the field-theory analysis.

From the previous analysis~which agrees with the scaling
laws we obtained theoretically! we can extract the following
striking conclusion: asb assumes a finite value andu is
compatible with zero, using the scaling relationu5b/n t we
obtain that eithern t is infinity or takes an extremely larg
value. Observe that Noest measuredn t54.060.5 @11#,
which is an atypically large value. In fact, an analogous
sult was obtained in the two-dimensional version of t
model@16#; Dickman and Moreira showed that as a matter
fact the exponentn t is not even defined. This is a straigh
forward consequence of the fact that the correlation functi
do not decay exponentially in the absorbing phase, but a
power law, i.e, there is no associated characteristic time,
thereforen t is undefined~or formally n t5`).

In order to explore this issue further, we have measu
the two-time correlation functions,̂n(t0)n(t01t)&2^n(t
→`)&2 for large times and different values of^p& for the
disordered model. The results are presented in Fig. 6. F
we observe that in all the cases, i.e., beyond, below, an
the critical point, we obtain power-law behaviors, and the
fore there is no characteristic time scale. Second, for a fi
value of ^p& and varyingt0, we observe different transien
regimes, but the asymptotic behavior does not depend ot0
for large enough times. This indicates that the model d
not exhibits aging@30#; therefore, even though the fiel
theory representing the model is non-Markovian~i.e., the

FIG. 7. Averaged total number of particles for spreading exp
ments, with different values of̂p&, as a function of time for the
disordered model~upper plot! and for the non-Markovian mode
~lower plot!.
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5066 57CAFIERO, GABRIELLI, AND MUÑOZ
two-time correlation functions cannot be expressed only a
function of the time difference!, the system relaxes to a
aging-free state.

This analysis can be interpreted as further supporting
guess thatu50 at the critical point. Otherwise, using th
scaling relations, we would obtain a finiten t and conse-
quently an exponential decay of the two-time correlat
function.

B. Spreading

In Fig. 7, 8, and 9, we present the evolution of the ma
nitudes defined in Eq.~3! for the spreading experiments. I
Tables I and II, we give a summary of the values of all t
scaling exponents for the magnitudes we have studied
cluding the exponentu, related to homogeneous initial con
ditions, together with a checking of the scaling relations
tween the exponents.

Observe that the three magnitudesN(t), Ps(t), andR2(t)
present generic power-law decays. In Tables I and II,

FIG. 8. Surviving probability for spreading experiments, wi
different values of̂ p&, as a function of time for the disordere
model~upper plot!, and for the non-Markovian model~lower plot!.
a

e

-

n-

-

e

show the values of the associated exponentsh, d, andz for
different values of̂ p&. Note that all the scaling laws pre
dicted in Sec. IV A are satisfied generically within the acc
racy limits. In particular, it is important to note that right
the critical point and in the active phase we obtain a value
d compatible withd50, and therefore satisfying the pre
dicted scaling relation,u5d50. As a by-product, we obtain
a confirmation of a result obtained some time ago in R
@21#. These authors demonstrated that an impure versio
the one-dimensional contact process exhibits an intermed
phase, i.e., a region in the active phase in whichR2 grows
slower thatt2. This is accordingly called thesublinear re-
gime @31#. We observe sublinear growth in the entire acti
phase; only in the limit̂ p&51 (a→`) do we obtain linear
growth, i.e., the intermediate phase coincides with the ac
phase~and also seems to extend to the absorbing pha!.
Therefore, the presence of such a sublinear regime seem
be a generic feature of impure one-dimensional systems

FIG. 9. Averaged square distance from the initial seed, w
different values of̂ p&, in a spreading experiment as a function
time for the disordered model~upper plot!, and for the non-
Markovian model~lower plot!.
TABLE I. Values of the scaling exponents for different values ofp ~disordered model!.

p h d z u h1d2dz/2 h2dz/2 d2u

0.5 20.5260.02 0.6160.02 0.1260.07 0.5760.02 0.0360.07 0.0460.04
0.55 20.3260.02 0.4860.02 0.1460.07 0.4460.02 0.0960.07 0.0460.04
0.66 20.0360.01 0.1060.01 0.1660.06 0.1360.02 20.0160.04 20.0360.03
0.70 0.1960.02 0.0560.01 0.5760.02 0.0260.05 20.0460.04 0.0360.06
0.71 0.2560.02 0.060.01 0.5860.02 0.0260.05 20.0460.03 20.0260.06
0.725 0.3560.02 0 0.7260.02 0 20.0160.03 0
0.75 0.5360.02 0 1.1060.01 0 20.0260.03 0
0.8 0.9260.02 0 1.7960.01 0 0.0260.03 0
0.85 0.9960.02 0 1.9960.01 0 20.0160.03 0
0.95 1.0060.02 0 2.0060.01 0 0.060.03 0
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TABLE II. Values of the scaling exponents for different values ofp ~non-Markovian model!.

p h d z u h1d2dz/2 h2dz/2 d2u

0.5 20.5060.02 0.5460.02 0.1060.08 0.5760.02 20.0160.08 20.0360.04
0.55 20.3760.02 0.4360.02 0.1260.08 0.4360.02 0.060.08 0.060.04
0.66 20.0860.02 0.1060.01 0.1460.07 0.1160.02 20.0560.06 20.0160.03
0.70 0.1960.02 0.0360.01 0.5760.02 0.0260.04 20.0660.04 0.0160.05
0.71 0.2460.02 0.060.01 0.5860.02 0.0160.04 20.0560.03 20.0160.05
0.725 0.3460.02 0 0.8160.04 0 20.0660.04 0
0.75 0.4760.02 0 1.0360.02 0 20.0460.03 0
0.8 0.9360.02 0 1.7960.01 0 0.0460.02 0
0.85 0.9960.02 0 1.9660.01 0 0.0160.02 0
0.95 1.0060.02 0 2.0060.01 0 0.060.02 0
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absorbing states. Our results could be compared with th
obtained by Noest for a different impurity distribution@12#.
This author showed, at the critical point, thatd̂51.28
60.03. Using Eq.~20!, this impliesh1d50.2860.03, to be
compared with the value 0.2560.02 that we measure~Tables
I and II!. On the other hand, for exponentz, Noest measured
z51.4460.06~using the relationz52nx /n t), and we obtain
z50.5860.02, again indicating a high degree of nonuniv
sality ~Tables I and II!.

As a last observation, we want to point out that the cur
for ^R2(t)& in the absorbing phase~see Fig. 9! do not seem
to have reached their stationary value in the time scale un
consideration. Thus the values ofz we give are just a rough
estimation, since error bars are quite large. Our results c
be asymptotically compatible withz50. Observe, also, tha
the combinationh1d in the absorbing phase gives a sm
exponent that could also be compatible with zero asympt
cally. In any case, all the predicted scaling relations am
exponents are perfectly satisfied both above and below
critical point.

VII. CONCLUSIONS

We have studied the disordered contact process under
ferent perspectives. First, we have mapped it into a p
model with memory, that reproduces all the phenomenol
,
et
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s.
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-

s

er

ld

l
i-
g
he

if-
re
y

of the original model. From this non-Markovian model, w
write down a simple field theory, that is in the same univ
sality class as one presented previously for the model w
Gaussian-distributed quenched disorder. Using this fi
theory we have derived a set of scaling relations not only
the critical point but also in the active and absorbing pha
where scale invariance is also observed. Our theoretical
dictions are confirmed in extensive Monte Carlo simulatio
In particular, we have shown the equivalence of the dis
dered and non-Markovian models, the generic presenc
scale invariance, and the existence of a sublinear-growth
gime. We also emphasized the absence of a characte
time scale, and verified all the predicted scaling laws.

In a future work we plan to investigate the no
Markovian model further in order to obtain some comp
mentary analytical results. In particular, we aim to app
real-space renormalization methods to the one-dimensi
model, and plan to propose an investigation of the gen
scale invariance from a renormalization point of view.
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