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Theoretical and numerical analyses of the one-dimensional contact process with quenched disorder are
presented. We derive scaling relations which differ from their counterparts in the pure model, and that are valid
not only at the critical point but also away from it due to the presence of generic scale invariance. All the
proposed scaling laws are verified in numerical simulations. In addition, we map the disordered contact process
into a non-Markovian contact process by using the so called run time statistics, and write down the associated
field theory. This turns out belong to the same universality class as the one derived by JRhgsefRev. E
55, 6253(1997] for the quenched system with a Gaussian distribution of impurities. Our findings reported
herein support the lack of universality suggested by the field-theoretical analysis: generic power-law behaviors
are obtained. We moreover show the absence of a characteristic time away from the critical point, and the
absence of universality is put forward. The intermediate sublinear regime predicted by Bramsom, Durret, and
SchnmanrfAnn. Prob.19, 960(1991)] is also found[S1063-651X98)04905-9

PACS numbdss): 05.50+q, 02.50--r

I. INTRODUCTION investigated, with apparently striking conclusidis’]; and
the problem of heterogeneous catalysis on disordered media,
As first conjectured by Janssen and Grassbdjemany  for which a much richer behavior is observed than in its
numerical and analytical studies have established clearly thaounterpart without disord¢d.8].
all systems exhibiting a continuous transition intagique In any case, the dynamics in impure DP systems is well
absorbing state, without any other extra symmetry or consefestablished to be extremely slow. Due to the presence of
vation law, belong to the same universality class, namelyimpurities, a system that is globally in the absorbing phase
that of the contact proceg®,3]. This conjecture has been can include regions that locally take parameter values that
extended to include multicomponent systefd$ and also  correspond to the active regime in the analogous pure sys-
systems with an infinite number of absorbing stas  tem. The presence of these regions prevents the system from
Among many other models in this broad class are directedgjly relaxing to the absorbing state, and consequently it
percolation[2,3], the contact proced$], catalytic reactions decays in a slow fashion, i.e., exhibiting power lawsiinl
on surfaced7], the spreading of epidemics, and branching[llilay and logarithmically ind=2 [15,16], but not expo-

annihilating random walk$8]. Reggeon field theory is the . . .
minimal continuous theory capturing the key features of thi{lheengﬁltliyéa?zgii?erlcally expected in pure systems away from

universality clas¢9,1] [which is often referred to as the di- At a theoretical level a field-theory analysis for this class

rected percolatiodDP hereafteruniversality clask . )

Desr?ite its theoretical importance, no e{<periment has succ-)f mpure systems was recer?tly derived by Jangsd).
ceeded so far in identifying critical exponents compatible' NS Work corrects a previous incomplete analj28], and
with the predicted DP values. This could be due to the facEoncludes from ar expansion around the upper critical di-
that real systems are never pure, i.e., they present impuritieg}ension,d=4, that the renormalization group flow equa-
dilution, or other forms of disorder. The question arises oftions exhibit only runaway trajectories, and that therefore
how disorder affects the critical behavior of DP-like systemsthere is no stabléperturbative fixed point(nothing can be
That problem was first posed by Kinzfl0] and studied concluded about nonperturbative fixed pojntehis can be
numerically by Noesf11,12, who showed using a Harris seen as evidence that no universal critical behavior is ex-
criterion [13], that quenched disorder changes the criticalpected in this class of models.
behavior of DP systems in spatial dimensions betbw4. In this paper we revisit the impure one-dimensional prob-
He also demonstrated that whdr1, a generic power law lem, and look at it within an interesting perspective. In par-
(generic scale invariangean be observed, and thatde=2 a  ticular, we analyze the presence or absence of scaling laws in
Griffiths-like phasd14] can appear when the impurities take analogy to the two-dimensional results recently presented by
the form of dilution[11]. This same problem was recently Dickman and Moreira. We moreover study the universality
tackled by Dickman and Moreira in interesting papersof critical exponents and the scaling relations they obey, and
[15,16], where they pointed out the presence of logarithmicverify the presence of a sublinear regime predicted by Bram-
time dependences in thie=2 case, and a possible violation son, Durret, and Schnmar®21]. On the other hand, we
of scaling. present a hon-Markovian representation of this class of sys-

Two other related problems are temporarily disorderedems that shows the same phenomenology. This approach
systems with absorbing states, which have also been recentinables us to derive a field theory that turns out to be equiva-
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lent to the one derived by Janssen. From the field theory, wthese expressions have to be modified for the disordered
finally obtain relations among exponents. model as we will show(see Refs[3,1,26, and references
therein.

1. MODEL

) I1l. NON-MARKOVIAN REPRESENTATION
In the standard contact proce$6,2] each site of a

d-dimensional lattice is either “occupied” or “vacant.” In We start our analysis of the model by mapping it into a
its discrete-time version, an occupied site is extracted ranRon-Markovian model. The idea of representing a model
domly at each time step; it generates an offspring with probwith quenched disorder by means of an effective non-
ability p, or disappears with complementary probability 1 Markovian equation, i.e., with memory, including no disor-
—p. The offspring occupies a randomly chosen nearesgler, is not totally new. A complete theory that justifies such

neighbor; if it was empty it becomes occupied, while thean approach was developed in RE#2]; it was named the
system remains unchanged if the neighbor was already occtidn time statisti¢RTS), and has proven to be a useful tool in

pied. In the disordered contact process the probabpity

both the study of fractals with quenched disor{i28] and

changes from site to site. It is fixed in time, and obeys to &elf-organized models with extremal dynamjed].

distribution ITI(p). Through this paper we consider in par-
ticular
(p,a)=ap®*, ()

for which

<p>=%; 2

The central idea of the RTS can be exemplified by its
application to the random random walké@&RW) [27]. The
RRW is defined in the following way: a standard one-
dimensional random walker is considered, with the only dif-
ference being that the probabilities of jumping to the right,
or to the left, 1-q, change from site to site, are quenched,
and extracted from a certain probability distributi®{q).
The probability that at a given site, characterized by a given
value of g, visited n times by the walker, the walker has
jumpedk times to the left, is easily shown to be given by the

in this waya acts as a control parameter. For large values obinomial distribution[27]
a, the creation probability is large, and the system is in the

active phase, while for sufficiently small values pfthe

system decays into the absorbing state. We have chosen the

n!
P(k|q,n)=mqk(l—q)”’k. (6)

previous distribution for a technical reasons: it simplifies the

application of the run time statisti2—-24 that we use to
study the model.

Using the Bayes inversion formula for the inversion of con-
ditional probabilities, one can calculate the probability that at

The central magnitudes usually considered in this kind ofa given site the probability takes a particular value between
system are of two types: magnitudes measured in analysi$andq+dq from the knowledge ok aftern jumps[28,27:
with homogeneous initial conditions, and those measured

studying the spreading of a localized “seed” into the other-

wise empty spacg25]. In the first group, we determine the
stationary order parametar(defined as the average density
of particles in the stationary stajethe correlation timer,
and the correlation length In the second group we studiy
the total number of occupied sites in the lattigeraged
over all the runs including those which have reached th
absorbing stajeas a function of timeN(t); (ii) the overall
surviving probabilityP4(t), corresponding to the probability
that the system has not reached the absorbing state at,tim
and (iii) the mean square distance of spreading from the or
gin for the trials still surviving at at a given time as a
function of time,R?(t).

Right at the critical point of pure systems, we have

N(t)oct?, Pg(t)oct™?,

R2(t)«t? and n(t)oct 9

()
and, at a small distanc® from the critical point,

nocAP,  roc AT, foc AT, (4)

€.

(n+1)! ‘ ek
P(q+dq|n,k)=mq(l—q) P(aq)dg. (7)

An effective transition probability can be accordingly de-
fined as

e

q(n,k)=f dq gP(q|n,k). 8
This equation gives the effective probability for the walker to
ij_ump to the right in itsn+ 1 visit to a given site, conditioned
to the fact that im previous visits it jumpedk times to the
right.

Observe that the distribution equatigi) changes with
time (i.e., with n); the information about the history of the
system is contained in the effective transition probabilities
(that change from site to sjteThis is usually calledun time
statistics[22].

Let us now apply the previously described method to the
disordered contact process. At each site the value @hat
plays now a role analogous tpin the RRW, is extracted
from the distribution equatioiil) [29]; it is straightforward

which define the set of critical exponents we are interestedo verify that

in. In pure systems the following scaling relations hold:

n+6+60=dz2, 6=6, z=2v/v; and 6=plv

©)

(n+1)!

P(p-+dpln.k)=p** X (1—p)" e

dp,
9)
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wheren is the number of times that a given site has been %

chosen to try an evolution step, akds the total number of SM[d’,lﬂ]:f drdJ dt[}\lﬂzéﬁ— YD p— uPp— N
times in which an offspring has been generatelviously 0

n—k is the number of events in which the site has become ) t

empty). Therefore the effective parameterat the site under —Vig)+ 7¢¢j0d7 P(X,7) p(X,7)
consideration is

. (13

where the dependence of the fields wrand t has been
k+ omitted to simplify notations.
ntat1l (10) On the other hand, considering the standard Reggeon field
theory[Eq. (11)], with a site dependent quenched mass co-
efficient u?(x), and a Gaussian distribution of “masses”
Note that in the infiniten limit the distribution of effective With mean u?, and variance({u?(x)u?(x"))=(f/2)8(x
values of the probabilityp) does not collapse to & func- ~ —X’), after averaging over the disord@ne just has to per-
tion, but converges asymptotically to the distribution equaform a Gaussian integnal19] one obtains
tion (1) [27].

1
<p>=fodp pR(p+dp|n,k)=

Sd[¢.¢]=f drd“ dt{N g — (o, p— uPp—\?
IV. FIELD THEORY °
2

Using the previously derived non-Markovian approach, —V2¢)]
we can construct an associate field theory. Let us first con-
sider the standard Reggeon field theory describing the uni-
versality class of the pure contact procs9]: Observe that Eq(14) is very similar to Eq(13), except for

the time integration limit and the value of the multiplicative
coefficients of the second term on the right-hand side. This
_ af” 2 _ _ .2 difference states that only in the large time limit does the
aad J'dr Jo dEAYXD D) ~ gDl dd— p7¢ non-Markovian approach reproduce the exact re@stalso
— happens in the run time statistics approackherefore, we
—Ap(X, 1) = VoB(X, 1) ]} (1) take the infinite time limit in the upper limit of the integral
equation(12), and in this way we recover EQLJ3).

Naive power counting arguments show that all three non-
linearities in EQ.(13) can be renormalized iWl=4. This
result is consistent with the Harris criteriuf3] presented
by Kinzel [10] and Noes{11], which states that quenched
spatial disorder affects the critical behavior of the contact
process and models in the same universality class bdlow
=4. The detailed renormalization procedure of Efl) can
pe found in Ref[19].

+f th P(X, 1) (X, 1) (14)
0

The coefficient of the linear termy? (the massin a field
theoretical languagedepends linearly on the creation prob-
ability p. A large p makes the contact process supercritical.
So does a value ofi® above its critical value. Therefore in
order to implement the idea of(@) value changing in time
[as happens in Eqg9) and (10)] in the field theory, we
should consider a time dependestt. To see hows? should

be modified, one should observe that at any time the reno
malized value ofu? at a given poinix is given by the ex-
pectation value of/(x,t) ¢(x,t). Therefore, in order to in- V. SCALING LAWS
troduce the dependence pfon the system history at each

point x, we can perform the following substitution: The field theory we have written down can also be used as

a starting point to derive scaling relations. From Ei) (or
using other standard scaling argumeniisis easy to derive
) 5 5 t that, in the active regime,
M= nod X, 1) = p +7J dr ¢(x,7) (X, 7); (12
0 n+ 6+ 0=dz/2. (15)

that is, at every time step, thmodifiedvalue of the linear Let us derive the corresponding relation for the impimen-
coefficient, 2,4, is given by its original value corrected by Markovian model here. We invoke the simple arguments
a time dependent term given by the expectation value ofhat, asN(t) is obtained averaging over all the runs, it can be
¥(X,1) d(x,1) integrated over the previous history of the sys-written asN(t) = Ng(t) Ps(t) + 0X[1— P4(t)] whereNg(t) is
tem, i.e., the original creation probability is substituted by athe total number of particles calculated averaging only over
sort of time average of the creation probability along thesurviving runs. Consequently, one obtaMg(t)~t7*°. Af-
previous system pattobserve thaty acts as a normalization ter creating a perturbation, if a growing cluster of occupied
factor, in analogy to what we obtained in Eq8) and(10).  sites is generated, the radius of such a cluster growR as
We want to stress that the construction here is not rigorousgt??, and its volume af%=t472. From the two previous
but only a reasonable guess based on the knowledge derivedpressions, the density of particles inside the cluster goes
from the run time statistics approach. like t7*9~922 Byt the density inside the cluster scales a%

By performing the previous substitution, the action be-by definition of §. Therefore, we straightforwardly obtain
comes Eq. (15).
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asymptotic ITy(p) , for a=2 80
—— Ty(p=a p', a=2 (<p>=0.666...)
20 -2.0
]
= g -
é E -70 — <p>=(Ll \\‘\
I:‘.S 10 ¢ <p>=(.25
—-- <p>=0.4
——= <p>=0.5
120+ —-— <p>=0.66
<p>=0.7
——= <p>=01.8 (a)
. . . . —-— <p>=0.95
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Int
FIG. 1. Distribution o p) for large times in the non-Markovian 50
model ITy,(p) compared with the fixed distribution of the disor- .
dered modelly(p) for a=2. 20 ,E{:’:\:"'*'»-— rrrrrrrrrrrrrr —
The previous expression is valid only at the critical point g T e T T
. . . . £ 70 — =] T . ~
in the pure model, where scale invariance is expected. Con- £ 025 T
. . . . . . - <pr=04 ~. T
trarily, in the impure model, where generic scale invariance s \
is expected, the previous argument is valid in all the active Rl e
phase, in which growing clusters are typically generated s (b)
from localized seeds. _ _ _ o 1795 ™ o PYRETS—T
On the other hand, in the absorbing phase, typically initial Int

seeds are located in locally absorbing regions and die out

exponentially. However, there is a probability for the initial time for the disordered modefupper plo} and for the non-

seed of “landing™ in a locally active cluster. When the per- \ . ovian modeklower plob, for different values of p).
turbation escapes from these clusters, it dies out exponen-

tially more quickly. But, inside these finite clusters, the local R

stationary density is reached in a finite time. Therefore we For completeness, let us point out that the exportent

can substitute formally by zero in Eq.(15), and obtain calculated in Ref[11] is easily related to the exponents we
have defined, since

FIG. 2. Decay of the density of occupied sites as a function of

n+6=dz/2 (16)
(note that this does not mean thais zerg. d=1+7+4. (20
On the other hand, using the symmetry of the Lagrangian
under the exchange of the fieldsand, it is not difficult to R
obtain I (a)
08 | 3
EN
5=0, (17) L 08 ix\i
as in the pure modegkee Ref[26] for a review of the un- T o4y BN
derlying ideas Observe that the previous symmetry, present I;\
in the Reggeon field theory, is not broken by the introduction 0.2 ¢ \IL
of the non-Markovian term, i.e., by the quenched impurities. b
Therefore, 00, 10 oz om0 g.ég 050 060 070 080
n+28=dz?2 (18 I

) “LE (b)
in the active regime of our model, as well as in the critical o 1‘\1\
point of the pure model. 06 | iN

In the active phase, starting from an homogeneous distri- @ I

bution, the system also relaxes to its stationary state as a & 04l I
power law. By definition of the active regime, the surviving k3
probability does not go to zero for large times. Moreover, as 02t
P4(t) is a monotonously decreasing function of time, we II\E
obtain thaté=0 all along the active phase. Using the scaling 0.0 o T o o e ko Dio o
relation presented in Eq17), we also obtaind=0. This <p>

simplifies Eq.(18) to FIG. 3. Value of the exponer@({p)) as a function of p) for

the disordered modéupper ploj and for the non-Markovian model
n=dz/2. (29 (lower plod.
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FIG. 5. Log-log plot ofn(t=2<;(p))** as a function of p) for
the disordered modéupper ploj and for the non-Markovian model
(lower ploY. The value ofg3 is that given by the fit in Fig. 4. The
extrapolation tan(t=«)=0 givesp.=0.71+0.01.

FIG. 4. Stationary value of the density as a functionjpf for
the disordered modéupper ploj and for the non-Markovian model
(lower ploy. A power-law fit for the scaling oh(t=o;(p)) is

shown in the figure. . — . .
9 equivalent model; the results coincide within the numerical

o o ! - accuracy. In fact, as it is shown in Fig. 1, the long time
To justify this, it is sufficent to observe thdtis the exponent jistribution of values ofp) in the non-Markovian model is

of a time integral of the total number of particles averaged,erified to converge to the distribution in the quenched
over the surviving runs. , , , model of Eq.(1). To avoid repetition, we discuss both cases
Summing up, the main conclusions of this section are the,s 5 whole, and present figures for both the disordered and

following: (i) In the active phasey=dz/2 and6=60=0.(ii)  non-Markovian models. We now present the main results we
In the absorbing phase;+ 6=dz/2 and 6= 6+0. have obtained.

VI. MONTE CARLO RESULTS A. Homogeneous initial conditions

We have performed extensive Monte Carlo simulations of The density of particlesi(t) [n(t)=N(t)/L] decays in
the contact process with quenched impurities distributed adime as shown in Fig. 2. Observe that for large enough values
cording to Eq. (1), as well as of the associated non- of (p) the curves converge to a stationary value, that is, their
Markovian contact process defined by E@8) and (10). derivative with respect to time converges to zero asymptoti-
Spreading experiments have been performed in lattices thaglly. On the other hand, for small values (@) the curves
were large enough to ensure that the occupied region doeakecay like power laws with nonuniversal exponents that de-
not reach the system limits. Experiments are started witjpend on (p); n(t)<t~%<P>) In Fig. 3, we show the
random homogeneous initial conditions and are performed imsymptotic exponené({p)) as a function of p), for both
system sizes up tb= 10" and periodic boundary conditions. the disordered and non-Markovian models. It decays con-
But most of the results presented correspond t010°. At tinuously from its maximum value in the absorbing state to a
every time step a particle is randomly chosen, and the dyvery small value(compatible with zerp It vanishes in the
namics proceeds in the way explained in Sec. Il; after eaclctive regime. Also observe the difficulty in accurately locat-
step the time variable is increased in N(t); i.e., when all  ing the critical point. Usually, in pure systems away from the
the particles are updated once on average, the time increasastical point, n(t) decays exponentially in the absorbing
in one unit. Simulations are run long enough to ensure thaphase, and converges to a constant value in the active phase.
the system relaxes to its stationary state in the active phadedecays as a power law only at the critical point. Conse-
(t=~1.6x 10" time steps The different magnitudes are ob- quently there is a neat criterion to identify the critical point:
tained by averaging over many independent r(frem 10¢  power laws are the signature of criticality. In the impure
for large values of p), where most realizations die at late model, instead, the generic presence of power laws makes
times and we can easily collect a good statistics, tofd®  the determination of the critical point a more delicate issue,
small values of(p), where many realizations die at early but at the same time a more irrelevant one.
times. All the forthcoming discussions are valid for both the  Two possible scenarios are compatible with the data we
model with quenched disorder and the non-Markovianhave obtained: in the first on&({p)) is a continuous func-
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FIG. 7. Averaged total number of particles for spreading experi-
-toe 074 Lot ments, with different values ofp), as a function of time for the
— <p>=0.74,t = . .
(©) —_— f(f,ﬂfv,ﬁo‘]lmm disordered mode(upper ploj and for the non-Markovian model

o4y (lower plob.

o WWM nYA as a function ofA =(p)—(p)., with =0.29. The ex-
el trapolation to zero ofi*’# gives(p).=0.71+0.01, consistent
with our previous assumption. Observe that the valug of

we find is very different from the one obtained by Noest for
a different distribution of impuritiesg=1.75-0.1[11]. We
-120. 5 25 a0 interpret this discrepancy as a consequence of the absence of
In(® universality predicted by the field-theory analysis.

FIG. 6. Decay of the two-time density correlation function for From the previous ana_lys{svhlch agrees with the Sca_llng
different initial times(disordered modelas a function of the time 1AWS We obtained theoretica)lyve can extract the following
differencet, and different values dfp): (p)=0.68 in the absorbing Striking conclusion: ag3 assumes a finite value anfl is
phase(upper figure, (p)=0.71 at critical pointcentral figurg, and ~ compatible with zero, using the scaling relatios g/ v we
(p)=0.74 in the active phas@ower figure. obtain that eithemw;, is infinity or takes an extremely large

value. Observe that Noest measureg=4.0+0.5 [11],
tion of (p), and the point at which it reaches zero for the firstwhich is an atypically large value. In fact, an analogous re-
time corresponds to the critical point. The second possibilitysult was obtained in the two-dimensional version of the
is that there is a discontinuous jump at the critical point, i.e.model[16]; Dickman and Moreira showed that as a matter of
the curves in Fig. 3 would not be continuous; this wouldfact the exponent, is not even defined. This is a straight-
imply a nonzero value ob at the transition point. Even forward consequence of the fact that the correlation functions
though from our numerics it is not possible to resolve thedo not decay exponentially in the absorbing phase, but as a
previous dilemma, we are tempted to conclude that the firgbower law, i.e, there is no associated characteristic time, and
possibility is the right one. This argument is based on thehereforey, is undefinedor formally v;=°).
small values ofg({p)) in the vicinity of the critical point, In order to explore this issue further, we have measured
and relies on the fact that the slopes are always observed the two-time correlation functionsqn(tg)n(te+t))—{n(t
change smoothly with(p). Therefore, no discontinuity —=))? for large times and different values ¢p) for the
“jump” is expected to occur. In any case, from the numer- disordered model. The results are presented in Fig. 6. First
ics, 6 can be expressed at the critical point a§p).) we observe that in all the cases, i.e., beyond, below, and at
=0.02+0.05, with{p).=0.71+0.01 (see below the critical point, we obtain power-law behaviors, and there-

In Fig. 4, we plot the asymptotic densityas a function fore there is no characteristic time scale. Second, for a fixed
of (p), together with a power-law fit. The best fit is obtained value of(p) and varyingty,, we observe different transient
taking (p).=0.705 for the critical effective parameter, and regimes, but the asymptotic behavior does not depentj on
gives 8=0.29+-0.01 for both the disordered and non- for large enough times. This indicates that the model does
Markovian models. In Fig. 5, we check the consistency ofnot exhibits aging[30]; therefore, even though the field
our assumption ofp)., by representing in a log-log plot theory representing the model is non-Markovi@e., the

In [<n(tn(t,H)>—<n(t=infinity)>"]

-11.6
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FIG. 8. Surviving probability for spreading experiments, with FIG. 9. Averaged square distance from the initial seed, with
different values of(p), as a function of time for the disordered different values of p), in a spreading experiment as a function of
model(upper ploj, and for the non-Markovian modébwer ploy.  time for the disordered modelupper ploj, and for the non-

Markovian model(lower plo9.
two-time correlation functions cannot be expressed only as a
function of the time differenge the system relaxes to an
aging-free state.

This analysis can be interpreted as further supporting th
guess that?=0 at the critical point. Otherwise, using the
scaling relations, we would obtain a finitg and conse-
guently an exponential decay of the two-time correlation
function.

show the values of the associated exponents, andz for
ifferent values of(p). Note that all the scaling laws pre-
icted in Sec. IV A are satisfied generically within the accu-
racy limits. In particular, it is important to note that right at
the critical point and in the active phase we obtain a value of
6 compatible with6=0, and therefore satisfying the pre-
dicted scaling relationd= 6=0. As a by-product, we obtain
a confirmation of a result obtained some time ago in Ref.
[21]. These authors demonstrated that an impure version of
In Fig. 7, 8, and 9, we present the evolution of the mag-the one-dimensional contact process exhibits an intermediate
nitudes defined in Eq3) for the spreading experiments. In phase, i.e., a region in the active phase in wHR?hgrows
Tables | and Il, we give a summary of the values of all theslower thatt?. This is accordingly called theublinear re-
scaling exponents for the magnitudes we have studied, ingime[31]. We observe sublinear growth in the entire active
cluding the exponené, related to homogeneous initial con- phase; only in the limi{p)=1 (a—«) do we obtain linear
ditions, together with a checking of the scaling relations be-growth, i.e., the intermediate phase coincides with the active
tween the exponents. phase(and also seems to extend to the absorbing phase
Observe that the three magnitudégt), P(t), andR?(t) Therefore, the presence of such a sublinear regime seems to
present generic power-law decays. In Tables | and Il, wébe a generic feature of impure one-dimensional systems with

B. Spreading

TABLE |. Values of the scaling exponents for different valuegpofdisordered modgl

p n S z 0 n+6—dz2 n—dz/2 o—0

0.5 —0.52+0.02 0.6%0.02 0.12:0.07 0.57-0.02 0.03:0.07 0.04£0.04
0.55 —0.32£0.02 0.48-0.02 0.14-0.07 0.44:0.02 0.09:0.07 0.04£0.04
0.66 —0.03£0.01 0.10-0.01 0.16-0.06 0.13:0.02 -0.01+0.04 —0.03£0.03
0.70 0.19:0.02 0.05-0.01 0.570.02 0.02£0.05 —0.04+0.04 0.03£0.06
0.71 0.25-0.02 0.0:0.01 0.58-0.02 0.02:£0.05 —0.04+0.03 —0.02+0.06
0.725 0.35:0.02 0 0.72-0.02 0 —0.01=0.03 0

0.75 0.53:0.02 0 1.1&¢0.01 0 —0.02+0.03 0

0.8 0.92:0.02 0 1.7%0.01 0 0.02-0.03 0

0.85 0.99:0.02 0 1.990.01 0 —0.01+0.03 0

0.95 1.00:0.02 0 2.06:0.01 0 0.0:0.03 0
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TABLE Il. Values of the scaling exponents for different valuespofnon-Markovian modgl

p 7 ) z 0 n+6—dzl2 n—dz/?2 6—6

0.5 —0.50+0.02 0.54-0.02 0.16-0.08 0.570.02 —0.01+0.08 —0.03+0.04
055 —0.37+20.02 0.43:0.02 0.12:0.08 0.43:0.02 0.0:0.08 0.6:0.04
0.66 —0.08:0.02 0.16-0.01 0.14-0.07 0.1*0.02 —-0.05+0.06 —0.01=0.03
0.70 0.19-0.02 0.030.01 0.52#0.02 0.02:0.04 —0.06x0.04 0.010.05
0.71 0.24-0.02 0.0:0.01 0.58:0.02 0.0%0.04 —0.05+0.03 —0.01+0.05
0.725 0.34-0.02 0 0.81%0.04 0 —0.06-0.04 0

0.75 0.470.02 0 1.03:0.02 0 —0.04+0.03 0

0.8 0.93-0.02 0 1.7%0.01 0 0.04-0.02 0

0.85 0.99-0.02 0 1.96:0.01 0 0.01%0.02 0

0.95 1.0G:0.02 0 2.06¢:0.01 0 0.@3:0.02 0

absorbing states. Our results could be compared with thosaf the original model. From this non-Markovian model, we
obtained by Noest for a different impurity distributiph2].  write down a simple field theory, that is in the same univer-
This author showed, at the critical point, thet=1.28 sality class as one presented previously for the model with
+0.03. Using Eq(20), this impliesy+ 5=0.28+0.03, to be  Gaussian-distributed quenched disorder. Using this field
compared with the value 0.250.02 that we measur@ables  theory we have derived a set of scaling relations not only at
| and I1). On the other hand, for exponentNoest measured the critical point but also in the active and absorbing phases
z=1.44+0.06 (using the relatioz=2v,/v,), and we obtain Where scale invariance is also observed. Our theoretical pre-
z=0.58+0.02, again indicating a high degree of nonuniver-dictions are confirmed in extensive Monte Carlo simulations.
sality (Tables 1 and IJ. In particular, we have shown the equivalence of the disor-

As a last observation, we want to point out that the curveglered and non-Markovian models, the generic presence of
for (R2(t)) in the absorbing phaseee Fig. 9 do not seem spale invariance, and th_e existence of a subllnear-grovvth_re_-
to have reached their stationary value in the time scale undéfme. We also emphasized the absence of a characteristic
consideration. Thus the values ofve give are just a rough time scale, and verified all the predicted scaling laws.
estimation, since error bars are quite large. Our results could !N @ future work we plan to investigate the non-
be asymptotically compatible with=0. Observe, also, that Markovian model further in order to obtain some comple-
the combinationy+ & in the absorbing phase gives a small Mentary analytical results. In particular, we aim to apply
exponent that could also be compatible with zero asymptotil®@/-space renormalization methods to the one-dimensional
cally. In any case, all the predicted scaling relations among'©del, and plan to propose an investigation of the generic
exponents are perfectly satisfied both above and below the@l€ invariance from a renormalization point of view.
critical point.
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